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Week 10

0.1 Integration

Lower Sums

Let f be a function bounded over the interval [a, b] with f(x) > 0, ∀x ∈ [a, b].

We can attempt to underestimate the area between the graph of f , the x-axis

and the lines y = a, y = b by by marking off n+1 points x0 = a, x1, . . . , xn = b

which partitions the interval into n sub-intervals and constructing a rectangle

on each sub-interval [xi−1, xi], i = 1, 2, . . . n with height equal to the greatest

lower bound of {f(x) : x ∈ [xi−1, xi]}, i = 1, 2, . . . n.

If we let mi = glb{f(x) : x ∈ [xi−1, xi]}, i = 0, 1, . . . n and P = {x0, x1, . . . , xn}

then we define:

L(f, P ) =

n
∑

i=1

mi(xi − xi−1)

L(f, P ) is the sum of the areas of the underestimating rectangles and is called

a lower sum.

Underestimation:

1
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Upper Sums

We can attempt to overestimate the area between the graph of f , the x-axis

and the lines y = a, y = b by by marking off n+1 points x0 = a, x1, . . . , xn = b

which partitions the interval into n sub-intervals and constructing a rectangle

on each sub-interval [xi−1, xi], i = 1, 2, . . . n with height equal to the least upper

bound of {f(x) : x ∈ [xi−1, xi]}, i = 1, 2, . . . n.

If we let Mi = lub{f(x) : x ∈ [xi−1, xi]}, i = 0, 1, . . . n then we define:

U(f, P ) =

n
∑

i=1

Mi(xi − xi−1)

U(f, P ) is the sum of the areas of the overestimating rectangles and is called

an upper sum.

Overestimation:

a b
q
x9

q
x1

x2 x3 x4 x5 x6 x7 x8

The set of points P = {x0 = a, x1, . . . , xn = b} is called a partition of the

interval [a, b].

We can add points to any partition to make it finer.

It is easy to show that if we make any partition finer then the lower sum gets

bigger and the upper sum gets smaller.
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We can add points to any partition to make it finer.

It is easy to show that if we make any partition finer then the lower sum gets

bigger and the upper sum gets smaller.

Lower Sums:

Partition P

a b

Partition P ′

a b

L(f, P ′) ≥ L(f, P )

Upper Sums:

Partition P

a b

Partition P ′

a b

U(f, P ′) ≤ U(f, P )
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It is easy to see (note the diagrams above) that adding a single point to a

partition will cause the lower sum to increase and similarly will cause an upper

sum to decrease.

In general, if P ′ is a refinement of P we can get from P to P ′ by adding a

single point at a time and we will find

L(f, P ) ≤ L(f, P ′) and U(f, P ) ≥ U(f, P ′).

The partition with the least number of points is P = {a, b}.

This partition gives us a single rectangle underestimating the area under the

curve and a single rectangle overestimating the area under the curve.

If we let m = glb{f(x) : x ∈ [a, b]} and M = lub{f(x) : x ∈ [a, b]} then

L(f, P ) = m(b − a) and U(F, P ) = M(b − a)

m

a b

M

a b

And so we see that m(b − a) is the smallest possible lower sum and M(b − a)

is the largest possible upper sum.

If we let

P = set of all possible partitions of [a, b]

we have

L(f, P ) ≥ m(b − a), for all P ∈ P

and

U(f, P ) ≤ m(b − a), for all P ∈ P
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If we let
L = {L(f, P ) : P ∈ P}

and
U = {U(f, P ) : P ∈ P}

then, we see from the above observations that L is bounded below by m(b− a)

and U is bounded above by M(b − a).

We will now show that the sets , L is also bounded above and U is bounded

below.

In fact we can now show any lower sum is less than or equal to any upper sum

even if they are based on different partitions:

Lemma 0.1

Let f be a bounded function defined over [a, b]. Let P1 and P2 be partitions of

[a, b]:
L(f, P1) ≤ U(f, P2)

Proof

The partition P1 ∪ P2 is a refinement of P1 and P2 therefore

L(f, P1) ≤ L(f, P1 ∪ P2) ≤ U(f, P1 ∪ P2) ≤ U(f, P2).

The above lemma says that every lower sum is smaller than any upper sum

whatever and vice-versa.

Definition 0.2

If
lub L = glb U

then the function f is said to integrable over [a, b] and the common value of

lub L and glb U is defined to be the area under curve.

The area under the curve is denoted by
∫ b

a
f or by

∫ b

a
f(x)dx

The dx is inserted to emphasize which symbol is the variable, e.g.
∫ b

a
xy2dx is

different from
∫

b

a
xy2dy
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If f(x) < 0 ∀x ∈ [a, b] then it is easy to see that
∫ b

a
f is the negative of the

area between the curve, the x-axis and the lines x = a and x = b.

If f(x) is sometimes positive and sometimes negative over [a, b] it is easy to see

that
∫ b

a
f is the area under the curve above the x-axis minus the area above

the curve, and below the x-axis, and the lines x = a and x = b.

0.1.0.1 An example of a function which is not integrable. Not all functions

are integrable. There are some very badly behaved functions which are not in-

tegrable:

Let

f(x) =

{

1, x ∈ Q,

2, x 6∈ Q.

It easy to show that this function is not integrable over any partition [a, b].

For example, let us show that f is not integrable over [0,1]:

Let P = {x0, x1, . . . , xn} be any partition of [0,1] then

mi = glb {f(x) : x ∈ [xi, xi+1]} = 1

and

Mi = lub {f(x) : x ∈ [xi, xi+1]} = 2.

therefore:

L(f, P ) =

n
∑

i=1

mi(xi − xi−1) =

n
∑

i=1

1.(xi − xi−1) = 1

U(f, P ) =

n
∑

i=1

mi(xi − xi−1) =

n
∑

i=1

2.(xi − xi−1) = 2

n
∑

i=1

(xi − xi−1) = 2

n
∑

i=1

(xi − xi−1) = 1 because it is the sum of the lengths of all the sub-intervals

into which [0,1] is sub-divided.

Therefore L = {1} and U = {2}

and we see that lub L 6=glb U and f is not integrable over [a, b]
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0.1.0.2 All continuous functions are integrable..

Theorem 0.3

If f is continuous over [a, b] then f is integrable over [a, b].

Example 0.4

Evaluate

∫ b

a

x2dx.

Let 0 < a < b. Let Pn be the partition of [a, b] into n sub-intervals of equal

length.

Each sub-interval will therefore be of length h =
b − a

n
.

Therefore

Pn = {a, a + h, a + 2h, a + 3h, . . . , a + (n − 1)h, a + nh = b}

a b

a
+

h

a
+

2
h

Note that the heights of the largest rectangles are given by

M1 = (a+h)2, M2 = (a+2h)2, M3 = (a+3h)2, M4 = (a+4h)2 . . . Mn = (a+nh)2.
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a b

a
+

h
a

+
2
h

the heights of the smaller rectangles are given by

m1 = a2, m2 = (a+h)2, m3 = (a+2h)2, m4 = (2+3h)2 . . . mn = (a+(n−1)h)2

Therefore

U(f, Pn) = (a+h)2h+(a+2h)2h+(a+3h)2h+ · · ·+(a+nh)2h =

n
∑

i=1

(a+ih)2h

and

L(f, Pn) = (a2)h+(a+h)2h+(a+2h)2h+(a+3h)2h+· · ·+(a+(n−1)h)2h =

n−1
∑

i=0

(a+ih)2h

Therefore

U(f, Pn) =

n
∑

i=1

(a + ih)2h =

n
∑

i=1

(a2 + 2ahi + h2i2)h =

n
∑

i=1

a2h + 2ah2i + h3i2

=
n

∑

i=1

a2h + 2ah2

n
∑

i=1

i + h3

n
∑

i=1

i2 = na2h + 2ah2 n(n + 1)

2
+ h3 n

6
(n + 1)(2n + 1)

= na2 (b − a)

n
+ 2a

(b − a)2

n2

n(n + 1)

2
+

(b − a)3

n3

n

6
(n + 1)(2n + 1)

= a2(b − a) + a(b − a)2
n(n + 1)

n2
+ (b − a)3

n(n + 1)(2n + 1)

n3

→ a2(b − a) + a(b − a)2 + (b − a)3
1

3
=

1

3
b3 −

1

3
b3 as n → ∞.

That is

lim
n→∞

U(f, Pn) =
1

3
b3 −

1

3
b3.
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Similary we can show that

lim
n→∞

L(f, Pn) =
1

3
b3 −

1

3
b3.

Now since

L(f, Pn) ≤

∫ b

a

x2dx ≤ U(f, Pn)

it follows that

lim
n→∞

L(f, Pn) ≤

∫ b

a

x2dx ≤ lim
n→∞

U(f, Pn)

That is,

1

3
b3 −

1

3
b3 ≤

∫

b

a

x2dx ≤
1

3
b3 −

1

3
b3 ⇒

∫

b

a

x2dx =
1

3
b3 −

1

3
b3


